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ABSTRACT

Two phase-�tted and ampli�cation-�tted three derivative Runge-Kutta
method (PFAFThDRK) for the numerical solution of �rst order initial
value problems (IVPs) of higher algebraic order with oscillatory solutions
are constructed. Using the phase-�tted and ampli�cation-�tted property,
a sixth-order three stage and seventh-order three stage three derivative
Runge-Kutta (ThDRK) method are proposed. Using the same property
of some existing Runge-Kutta methods (RK), the accuracy and e�ciency
of the methods constructed are compared by the means of numerical
investigations.
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1. Introduction

The �rst order ordinary di�erential equations (ODEs) for the numerical
solution of the IVPs are considered

y
′
=f(x, y), y(x0) =y0, (1)

where their solutions show periodically or oscillatory behavior. These type of
problems appears throughout certain �elds of applied sciences, for instance, me-
chanics, electronics, circuit simulation, orbital mechanics, astrophysics, molec-
ular dynamics and etc. In general, periodically or oscillatory behavior problems
are mostly known with second or higher order. Thence, it is essential to per-
form order reduction to solve the ODEs (1) by reducing them to �rst order
problems.

Quantum cryptography is an extensive and rapidly growing �eld today in
which quantum memory is implemented into quantum cryptography as a se-
curity mechanism within quantum key distribution (QKD). One essential fact
is that implementing Schrödinger equations to quantum memory is crucial for
further conceptual understanding as well as ensuring quantum security within
quantum cryptography. The numerical study of Schrödinger equations based
on ODEs system with periodic problem nowadays has drawn the attention of
many applied mathematicians across the globe.

In fact, Anastassi and Simos (2012), Kosti et al. (2012) and Chen et al.
(2012) e�ciently solved the Schrödinger equation and related periodically prob-
lems by designing a new explicit phase-�tted and ampli�cation-�tted for the
optimization of the method. Nevertheless, Wu (2003) and Wu (2004) revealed
that Schrödinger equations with spatial variables shows a crucial role in for-
mulating potential scattering resulting in a signi�cant decoherence in quantum
memory. Those are basic tools in any study of quantum memory within quan-
tum �eld scattering theory.

RK methods for solving oscillatory problems using several techniques,
for instance, phase-�tted and ampli�cation-�tted, trigonometrically-�tted
and exponentially-�tted techniques have been developed and expanded by
several famous authors such as Psihoyios and Simos (2005) and Anastassi and
Simos (2005) in their written papers. Psihoyios and Simos (2005) developed
a Runge-Kutta method with trigonometrically-�tting properties for the radial
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Schrödinger equation of order �ve. Anastassi and Simos (2005) constructed
two RK methods with trigonometrically-�tted property based on a classical
England's RK method specially designed for radial Schrödinger equation of
order �ve which have energy with lower powers in the local truncation error.

Recently, Fawzi et al. (2015) and Adel et al. (2016) derived two methods of
phase-�tted and ampli�cation-�tted for modi�ed RK and RK method of order
four respectively. Explicit two derivative Runge-Kutta (TDRK) methods given
by Chan and Tsai (2010) in which they include the second derivative in its
general formula making it �special�. Only one evaluation of f is involved and
a several number of g to be evaluated at every step. With this �nding, they
managed to derived methods up to order seven with �ve stages as well as some
embedded pairs.

A TDRK method with trigonometrically-�tted for the numerical integra-
tion of radial Schrödinger equation and periodically problems of order �ve are
constructed by Zhang et al. (2013). Other than that, Fang et al. (2013) and
Chen et al. (2015) constructed two TDRK methods of order four and three
practical TDRK methods with exponentially-�tted respectively. The newly
derived methods are compared with some widely-known optimized codes as
well as conventional exponentially-�tted RK methods in the literature.

Thus, in this research paper, a sixth-order and a seventh-order with both
having three stages explicit three derivative Runge-Kutta (ThDRK) methods
with phase-�tted and ampli�cation-�tted are derived. In second section, an
outline of ThDRK method is given and discussed. Meanwhile, in third section,
phase-�tting and ampli�cation-�tting properties are considered. The PFAFTh-
DRK methods are constructed in fourth section. The numerical results, discus-
sion and conclusion are discussed in �fth, sixth and seventh section respectively.

2. Three Derivative Runge-Kutta Methods

The scalar ODEs (1) is considered where f : <N → <N . The second
derivative are already known as in TDRK method. Hence, for this case, we
assume the third derivative to be known where

y
′′
= g(y) := f

′
(y)f(y), g : <N → <N , (2)

y
′′′

= ĝ(y) := f
′′
(y)(f(y), f(y)) + f

′
(y)f

′
(y)f(y), ĝ : <N → <N .
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For the numerical integration of IVPs (1), an explicit ThDRK method is given
by

Yi = yn + h

s∑
j=1

aijf(Yj) + h2
s∑
j=1

âijg(Yj) + h3
s∑
j=1

ˆ̂aij ĝ(Yj), (3)

yn+1 = yn + h

s∑
i=1

bif(Yi) + h2
s∑
i=1

b̂ig(Yi) + h3
s∑
i=1

ˆ̂
biĝ(Yi), (4)

where i = 1, . . . , s. Consider a minimum number of function evaluations for an
explicit method,

Yi = yn + hcif(yn) +
1

2
h2ci

2g(yn) + h3
i−1∑
j=1

ˆ̂aij ĝ(Yj), (5)

yn+1 = yn + hf(yn) +
1

2
h2g(yn) + h3

s∑
i=1

ˆ̂
biĝ(Yi), (6)

where i = 2, . . . , s.

The explicit ThDRK method are shown below in the form of Butcher‘s
Tableau.

c ˆ̂
A
ˆ̂
bT

=

0
c2 ˆ̂a21
...

...
. . .

cs ˆ̂as1 · · · ˆ̂ass−1
ˆ̂
b1 · · · ˆ̂

bs−1
ˆ̂
bs

(7)

The unique and interesting part in this method is where only single eval-
uation of f is involved and a several number of g to be evaluated at every
step in comparison to more evaluation of f and g at every step in conventional
explicit RK methods and TDRK methods respectively. The stages number of

the method is denoted as s and ˆ̂aij ,
ˆ̂
bi and ci are the ThDRK parameters which

are assumed to be real. The s-dimensional vectors ˆ̂b, c and s× s matrix, ˆ̂
A are

introduced where ˆ̂b =
[
ˆ̂
b1,

ˆ̂
b2, . . . ,

ˆ̂
bs

]T
, c = [c1, c2, . . . , cs]

T and ˆ̂
A =

[
ˆ̂aij

]
. We

use the following simplifying assumption,

s∑
i=1

ˆ̂aij =
1

6
ci

3, (8)

for j = 1, . . . , s.
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The order conditions and counts for ThDRK method are given in the fol-
lowing Table 1.

Table 1: Order conditions and counts for ThDRK methods

s Order Conditions Unknowns Conditions

1 3
ˆ̂
bT e = 1

6 1 1

2 4
ˆ̂
bT c = 1

24 3 2

2 5
ˆ̂
bT c2 = 1

60 3 3

3 6
ˆ̂
bT c3 = 1

120 6 4

3 7
ˆ̂
bT c4 = 1

210 ,
ˆ̂
bT

ˆ̂
Ac = 1

5040 6 6

3. Phase-Fitted and Ampli�cation-Fitted Three

Derivative Runge-Kutta Method

The linear scalar equation below is considered,

y
′
= λy. (9)

The exact solution with initial value y(x0) = y0 of this equation satis�es

y(x0 + h) = H0(z)y0, (10)

where H0(z) = exp(z) and z = iv. A phase advance v = λh is experienced by
the exact solution and the ampli�cation remains steady after a cycle of time h.
The ThDRK method is applied to the test equation (9) to yield

y1 = H(z)y0, (11)

where

H(z) =1 + v +
1

2
v2 + v3b̂

(
I − v2 ˆ̂A

)−1
e+ v4

(
I − v2 ˆ̂

A
)−1

c+

1

2
v5
(
I − v2 ˆ̂A

)−1
c2, (12)

where e = [1, . . . , 1]
T
, c = [c1, . . . , cs]

T and c2 =
[
c21, . . . , c

2
s

]T
.

The stability polynomial of the ThDRK method is given by H(z) as men-
tioned in Turac� and Özi³ (2017). U(v) and V (v) denote the real and imag-

inary part of H(z) respectively. For small h, argH(z) = tan−1
(
V (v)
U(v)

)
and

|H(z)| =
√
U2(v) + V 2(v). According to the analysis above, the following

de�nition arises.
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De�nition 3.1. (van der Houwen and Sommeijer (1987))
The quantities

P̃ (v) = v − argH(z) and D̃(v) = 1− |H(z)|, (13)

are called the phase lag (or dispersion) and the error of ampli�cation factor (or
dissipation) of the method, respectively. If

P̃ (v) = cφv
α+2 +O(vα+4) and D̃(v) = cdv

β+2 +O(vβ+4), (14)

then the method is called dispersive of order α and dissipative of order β, re-
spectively. If

P̃ (v) = 0 and D̃(v) = 0, (15)

the method is called phase-�tted (or zero-dispersive) and ampli�cation-�tted (or
zero dissipative), respectively.

Theorem 3.1. (Chen et al. (2012))
The method is phase-�tted and ampli�cation-�tted if and only if

U(v) = cos(v) and V (v) = sin(v). (16)

4. Derivation of the Methods with

Phase-Fitting and Ampli�cation-Fitting

Properties

Two PFAFThDRK methods, which are sixth-order three stages and
seventh-order three stages ThDRK methods are constructed. The derivation
of these methods are discussed in the following subsection.

4.1 Sixth-order Three Stages PFAFThDRK Method

For sixth-order ThDRK method, the steps to derive the method is very
simple and easy. The order conditions are solved for up to order six as given
in Table 1. A ThDRK formula of sixth-order method carry four equations
and six unknowns. Thus, this system has two free parameters. Evaluating the
simplifying assumption (8) leads to

ˆ̂a21 =
c32
6
, (17)

ˆ̂a31 =
c33
6
− ˆ̂a32, (18)
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According to order conditions up to order six in Table 1, we have

ˆ̂
b1 +

ˆ̂
b2 +

ˆ̂
b3 −

1

6
= 0, (19)

ˆ̂
b2c2 +

ˆ̂
b3c3 −

1

24
= 0, (20)

ˆ̂
b2c2

2 +
ˆ̂
b3c3

2 − 1

60
= 0, (21)

ˆ̂
b2c2

3 +
ˆ̂
b3c3

3 − 1

120
= 0. (22)

Solve (19)�(22) will lead to a solution of ˆ̂b1,
ˆ̂
b2,

ˆ̂
b3 and c3 in term of c2

ˆ̂
b1 =

1

120

15 c2
2 − 10 c2 + 1

c2 (2 c2 − 1)
, (23)

ˆ̂
b2 =

1

120

1

c2 (−4 c2 + 1 + 5 c22)
, (24)

ˆ̂
b3 =

1

120

(5 c2 − 2)
(
4− 20 c2 + 25 c2

2
)

(2 c2 − 1) (−4 c2 + 1 + 5 c22)
, (25)

c3 =
2 c2 − 1

5 c2 − 2
. (26)

For simplicity, ˆ̂a32 = 0 is chosen. The principal local truncation error coe�-
cient,

∥∥τ (7)∥∥
2
must have a very small value and this can be done by choosing an

appropriate value of c2. A vast global error di�erence will result in the wrong
choices of c2. By plotting the graph of

∥∥τ (7)∥∥
2
against c2, a small value of c2 is

chosen in the range of [0.0, 1.0] and hence, the value of c2 lies between [0.0, 1.0].
The value of c2 = 1

100 is chosen for an optimized pair. The method derived
with its coe�cients are showed below in Table 2. It is denoted as ThDRK(3,6).

Table 2: Sixth-order ThDRK method

0 0

1
100

1
6000000 0

98
195

470596
22244625 0 0

− 601
784

5000
5763

98865
1506064

The maximum global error is optimized with the combination of free pa-

rameters, ˆ̂b1 and ˆ̂
b2. In Table 2, all the coe�cients are used to evaluate the
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stability polynomial H(z). Thenceforth, the separation of H(z) into real and
imaginary part leads to,

cos (v) = − 1

6000000
ˆ̂
b2v

6 − 2401

1728900
v6 +

1

100
ˆ̂
b2v

4 +
507

15368
v4 − 1

2
v2 + 1,

(27)

sin (v) =
1

20000
ˆ̂
b2v

5 +
637

76840
v5 − ˆ̂

b1v
3 − 98865

1506064
v3 − ˆ̂

b2v
3 + v. (28)

Solving equation (27) and (28) we will obtain

ˆ̂
b1 =− 1

11760 (−60000 + v2) v4

(
− 92256025 v6 + 4802 v8 − 705600000 sin (v) v+

11760 sin (v) v3 + 2283252240 v4 − 34577928000 v2 + 70560000000+

3528000 v2 cos (v)− 70560000000 cos (v)

)
, (29)

ˆ̂
b2 =− 10000

5763

(−3457800 + 1728900 v2 + 4802 v6 − 114075 v4 + 3457800 cos (v)

v4 (−60000 + v2)

)
.

(30)

The following Taylor expansions as v → 0 are obtained:

ˆ̂
b1 =− 601

784
− 23

10080
v4 +

43

1728000
v6 − 133999

725760000000
v8+

3936606091

3962649600000000000
v10 + . . . ,

ˆ̂
b2 =

5000

5763
+

5

2016
v4 − 1997

72576000
v6 +

3326011

15966720000000
v8−

3021131303

2641766400000000000
v10 + . . . .

This derived method is called as PFAFThDRK(3,6). PFAFThDRK(3,6) will
reduce back to its original method as v → 0. Otherwise, PFAFThDRK(3,6)
will have the same error constant as ThDRK(3,6) whenever v → 0.

4.2 Seventh-order Three Stages PFAFThDRK Method

The coe�cient of the existing ThDRK method given in Table 3 is consid-
ered.
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Table 3: Butcher Tableau for ThDRK(3,7) method

0 0

3
7 −

√
2
7 − (−3+

√
2)

3

2058 0

3
7 +

√
2
7

71
14406 + 61

√
2

14406
122
7203 + 71

√
2

7203 0

1
30

1
15 + 13

√
2

480
1
15 − 13

√
2

480

The maximum global error is optimized with the combination of free pa-

rameters, ˆ̂b1 and ˆ̂
b2. In Table 3, all the coe�cients are used to evaluate the

stability polynomial H(z). Thenceforth, the separation of H(z) into real and
imaginary part leads to,

cos(v) =1− 1

2
v2 +

(
− 1

7
ˆ̂
b2
√
2−
√
2

480
+

3

7
ˆ̂
b2 +

1

48

)
v4 +

(
29

ˆ̂
b2
√
2

2058
−
√
2

2880
−

15
ˆ̂
b2

686
− 1

1440

)
v6 +

(
−
√
2

70560
+

1

23520

)
v8, (31)

sin(v) =v +

(
−ˆ̂b2 − ˆ̂

b1 +
13
√
2

480
− 1

15

)
v3 +

(
−3

ˆ̂
b2
√
2

49
+

√
2

960
+

11
ˆ̂
b2

98
+

1

240

)
v5

− v7

5040
+

(
11

1481760
−
√
2

246960

)
v9. (32)

Solving equation (31) and (32), the following Taylor expansions as v → 0 are
obtained

ˆ̂
b1 =

1

30
+

(
4
√
2− 5

)
v4

−120960 + 40320
√
2
−

(
−727 + 499

√
2
)
v6

25401600
(
−3 +

√
2
)2−(

19656918
√
2− 27814993

)
v8

1150082841600
(
−3 +

√
2
)3 +

(
−32049357357 + 22660009499

√
2
)
v10

4395616620595200
(
−3 +

√
2
)4 + . . . ,

(33)

ˆ̂
b2 =

1

15
+

13
√
2

480
−

(
4
√
2− 5

)
v4

−120960 + 40320
√
2
+

(
−3942 + 2609

√
2
)
v6

88905600
(
−3 +

√
2
)2−(

−14278451 + 10094970
√
2
)
v8

1150082841600
(
−3 +

√
2
)3 +

(
1129876894

√
2− 1598038383

)
v10

439561662059520
(
−3 +

√
2
)4 + . . . .

(34)
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This derived method is called as PFAFThDRK(3,7). PFAFThDRK(3,7) will
reduce back to its original method as v → 0. Otherwise, PFAFThDRK(3,7)
will have the same error constant as ThDRK(3,7) whenever v → 0.

5. Problems Tested and Numerical Results

The derived methods PFAFThDRK(3,6) and PFAFThDRK(3,7) are
compared in term of their numerical performances with some famous existing
RK and TDRK methods by considering Problems 1�4 below. C codes are used
for solving di�erential equations where all the problems choosen are having
oscillatory solutions.

Problem 1 (Two-body problem, Simos (2005))

y1
′ =y2, y1(0) = 1,

y2
′ =− y1

(
√
y12 + y32)3

, y2(0) = 0,

y3
′ =y4, y3(0) = 0,

y4
′ =− y3

(
√
y12 + y32)3

, y4(0) = 1.

Exact solution is

y1(x) = cos(x), y2(x) =− sin(x), y3(x,=sin(x), y4(x) = cos(x).

Problem 2 (Prothero-Robinson problem, Chan and Tsai (2010))

y′ = −λ(y − ϕ) + ϕ′, y(0) =ϕ(0), Re(λ) <0,

where ϕ(x) is a smooth function and ϕ(x) = sin(x).
Exact solution is y(x) = ϕ(x).

Problem 3 (Inhomogeneous problem, Van de Vyver (2006))

y1
′ =y2, y1(0) =1,

y2
′ =− 100y1 + 99 sin(x), y2(0) =11.

Exact solution is

y1(x) = cos(10x) + sin(10x) + sin(x), y2(x) =− 10 sin(x) + 10 cos(10x) + cos(x).
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Problem 4 (An �almost� Periodic Orbit problem, Stiefel and Bettis (1969))

y1
′ =y2, y1(0),=1,

y2
′ =− y1 + 0.001 cos(x), y2(0) =1,

y3
′ =y4, y3(0) =0,

y4
′ =− y3 + 0.001 sin(x), y4(0) =0.995.

Exact solution is

y1(x) = cos(x) + 0.0005x sin(x), y2(x) =− sin(x) + 0.0005x cos(x) + 0.0005 sin(x),

y3(x) = sin(x)− 0.0005x cos(x), y4(x) = cos(x) + 0.0005x sin(x)− 0.0005 cos(x).

Figures 1�4 used the following notations:

� PFAFThDRK(3,6): The sixth-order three stages ThDRKmethod with
phase-�tting and ampli�cation-�tting properties derived earlier.

� PFAFThDRK(3,7): The seventh-order three stages ThDRK method
with phase-�tting and ampli�cation-�tting properties derived earlier.

� TFTDRK(3,5): Existing three stage order �ve trigononometrically-
�tted TDRK method derived by Zhang et al. (2013).

� TFRKS(6,5): Existing six stages order �ve trigononometrically-�tted
RK method developed by Anastassi and Simos (2005).

� TFRKAS(6,5): Existing six stages order �ve trigononometrically-�tted
RK method constructed by Anastassi and Simos (2005).

� PFAFRKC(7,5): Existing seven stages order �ve phase-�tted and
ampli�cation-�tted RK method given in Chen et al. (2012).

The numerical performances are represented graphically in Figures 1�4.
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PFAFRKC(7,5)
TFRKAS(6,5)
TFRKS(6,5)

TFTDRK(3,5)
PFAFThDRK(3,7)
PFAFThDRK(3,6)

log10(Function Evaluations)

lo
g
1
0
(M

A
X
E
R
R
)

76.86.66.46.265.85.6

2

0

−2

−4

−6

−8

−10

Figure 1: The performance curve for the two-body problem (Problem 1) for PFAFThDRK(3,6)

and PFAFThDRK(3,7) methods with T = 10000 and time step h = 1/2i, i = 3, . . . , 7.

PFAFRKC(7,5)
TFRKAS(6,5)
TFRKS(6,5)

TFTDRK(3,5)
PFAFThDRK(3,7)
PFAFThDRK(3,6)

log10(Function Evaluations)

lo
g
1
0
(M

A
X
E
R
R
)

6.66.46.265.85.65.45.2

−6

−8

−10

−12

−14

Figure 2: The performance curve for Prothero-Robinson problem (Problem 2) for PFAFTh-

DRK(3,6) and PFAFThDRK(3,7) methods with λ = 1, T = 10000 and time step h = 1/2i, i =
2, . . . , 6.
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PFAFRKC(7,5)
TFRKAS(6,5)
TFRKS(6,5)

TFTDRK(3,5)
PFAFThDRK(3,7)
PFAFThDRK(3,6)

log10(Function Evaluations)

lo
g
1
0
(M

A
X
E
R
R
)

7.276.86.66.46.265.8

0

−2

−4

−6

−8

−10

−12

Figure 3: The performance curve for the inhomogeneous problem (Problem 3) for PFAFTh-

DRK(3,6) and PFAFThDRK(3,7) methods with T = 10000 and time step h = 1/2i, i = 4, . . . , 8.

PFAFRKC(7,5)
TFRKAS(6,5)
TFRKS(6,5)

TFTDRK(3,5)
PFAFThDRK(3,7)
PFAFThDRK(3,6)

log10(Function Evaluations)

lo
g
1
0
(M

A
X
E
R
R
)

6.66.46.265.85.65.45.2

−5

−6

−7

−8

−9

−10

−11

−12

−13

Figure 4: The performance curve for �almost� periodic problem (Problem 4) for PFAFThDRK(3,6)

and PFAFThDRK(3,7) methods with T = 10000 and time step h = 1/2i, i = 2, . . . , 6.

6. Discussion

The numerical experiments show the properties of the phase-�tted and
ampli�cation-�tted ThDRK methods, PFAFThDRK(3,6) and PFAFTh-
DRK(3,7) derived earlier in this paper. The comparison are made between
the proposed methods and some existing RK and TDRK methods with
trigonometrically-�tting, phase-�tting and ampli�cation-�tting properties.
The graphs are plotted between the global maximum error and the e�ciency of
the proposed method over a higher integration period. Figures 1�4 represent
the accuracy and e�ciency of the proposed method developed by plotting the
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graph of the maximum global error against the number of function evaluations,
both in logarithm for a lengthy periods of computations. From the plotted
graphs, PFAFThDRK(3,6) and PFAFThDRK(3,7) show higher accuracy with
the smallest maximum global error in comparison with the same type of other
existing RK and TDRK methods.

In Figure 3, the smaller the h value, the maximum global error of the
PFAFThDRK(3,6) and PFAFThDRK(3,7) methods seem to �atten through-
out the curve end. The frequency, λ and step-size, h determine the accuracy of
the method. The derived methods will converge to its original method as the
value of h becomes smaller. The comparisons are made with lower order meth-
ods since there is no RK methods with such properties which have order higher
than �ve. There are plenty of RK methods with order higher than �ve but they
did not have the same properties as the derived methods but this kind of com-
parison will become unfair and irrelevant. The comparisons are made between
methods of the same properties but it can be seen that PFAFThDRK(3,6) and
PFAFThDRK(3,7) methods are the most accurate methods of all in term of
maximum global error. PFAFThDRK(3,6) and PFAFThDRK(3,7) methods
have lesser number of stages compared to other existing RK methods.

7. Conclusion

In this research, sixth and seventh-order PFAFDIThDRK methods have
been developed. To sum up, the constructed methods are more promis-
ing compared to other existing well-known RK and TDRK methods with
trigonometrically-�tting, phase-�tting and ampli�cation-�tting properties in
the literature in terms of accuracy, e�ciency and the number of function
evaluations at every step based on the numerical results obtained.
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